
In-Parameter-Order: A Test Generation
Strategy for Pairwise Testing

Jeff Lei
Department of Computer Science and Engineering

The Univ. of Texas at Arlington
6/21/2005

Pairwise Testing and Beyond 2

Outline

Introduction

The IPO Strategy

Related Work

3-Way Testing and Beyond

Conclusion

Pairwise Testing and Beyond 3

Why Testing?

Modern society is increasingly dependent on the
quality of software systems.

Software failure can cause severe consequences,
including loss of human life

Testing is the most widely used approach to
ensuring software quality

Pairwise Testing and Beyond 4

The Testing Process

The testing process consists of three stages:

Test Generation – Generate test data inputs

Test Execution – Test setup and the actual test
runs

Test Results Evaluation – Check if the output is in
line with expectations

Pairwise Testing and Beyond 5

The Challenge

Testing is labor intensive and can be very costly
often estimated to consume more than 50% of the
development cost

Exhaustive testing is impractical due to resource
constraints

How to make a good trade-off between test
effort and quality assurance?

Pairwise Testing and Beyond 6

Pairwise Testing

Given any pair of input parameters of a system,
every combination of valid values of the two
parameters be covered by at least one test

A special case of combinatorial testing that
requires n-way combinations be tested

n can be 1, 2, …, or the total number of parameters in the
system

Based on simple specifications, and does not need
to look into the implementation details

Pairwise Testing and Beyond 7

Example (1)

Exhaustive testing requires 81 tests = 3 * 3 * 3 * 3.

Pairwise Testing and Beyond 8

Example (2)

Pairwise Testing and Beyond 9

Why Pairwise?

Many faults are caused by the interactions
between two parameters

92% block coverage, 85% decision coverage, 49% p-uses
and 72% c-uses

Not practical to cover all the parameter
interactions

Consider a system with n parameter, each with m values.
How many interactions to be covered?

A “good” trade-off between test effort and test
coverage

For a system with 20 parameters each with 15 values,
pairwise testing only requires less than 412 tests,
whereas exhaustive testing requires 1520 tests.

Pairwise Testing and Beyond 10

Outline

Introduction

The IPO Strategy

Related Work

3-Way Testing and Beyond

Conclusion

Pairwise Testing and Beyond 11

NP-Completeness

The problem of generating a minimum pairwise test
set is NP-complete.

Can be reduced to the vertex cover problem

Unlikely to find a polynomial time algorithm to
solve the problem.

Greedy algorithms are the first thing coming into the
mind of a computer scientist

Pairwise Testing and Beyond 12

The Framework

Strategy In-Parameter-Order
begin

/* for the first two parameters p1 and p2 */
T := {(v1, v2) | v1 and v2 are values of p1 and p2, respectively}
if n = 2 then stop;
/* for the remaining parameters */
for parameter pi, i = 3, 4, …, n do
begin

/* horizontal growth */
for each test (v1, v2, …, vi-1) in T do

replace it with (v1, v2, …, vi-1, vi), where vi is a value of pi
/* vertical growth */
while T does not cover all pairs between pi and

each of p1, p2, …, pi-1 do
add a new test for p1, p2, …, pi to T;

end
end

Pairwise Testing and Beyond 13

Horizontal Growth

Pairwise Testing and Beyond 14

Vertical Growth

Pairwise Testing and Beyond 15

Example (1)

Consider a system with the following parameters and
values:

parameter A has values A1 and A2

parameter B has values B1 and B2, and

parameter C has values C1, C2, and C3

Pairwise Testing and Beyond 16

Example (2)

A B
A1 B1
A1 B2
A2 B1
A2 B2

A B C
A1 B1 C1
A1 B2 C2
A2 B1 C3
A2 B2 C1

A B C
A1 B1 C1
A1 B2 C2
A2 B1 C3
A2 B2 C1
A2 B1 C2
A1 B2 C3

Horizontal Growth Vertical Growth

Pairwise Testing and Beyond 17

PairTest

A Java tool that implements the IPO strategy

Supports the following types of test generation
Account for relations and constraints
Extend from an existing test set
Modify/extend an existing test set after changes of
parameters, values, relations and constraints

Has been used in IBM and software engineering
classes at NCSU

Pairwise Testing and Beyond 18

Empirical Results (1)

Let n be the number of parameters, and d the domain size of
each parameter. The size of a pairwise test set is in the order
of O(log n) and O(d2).

Pairwise Testing and Beyond 19

Empirical Results (2)

Pairwise Testing and Beyond 20

Outline

Introduction

The IPO Strategy

Related Work

3-Way Testing and Beyond

Conclusion

Pairwise Testing and Beyond 21

Classification

Computational methods that are mainly developed
by computer scientists

AETG (from Telcordia), TCG (from JPL/NASA), DDA
(from ASU), PairTest

Algebraic methods that are mainly developed by
mathematicians

Orthogonal Arrays
Recursive Construction

Pairwise Testing and Beyond 22

AETG (1)

Starts with an empty set and adds one (complete)
test at a time

Each test is locally optimized to cover the most
number of missing pairs:

Generate a random order of the parameters
Use a greedy algorithm to construct a test that covers
the most uncovered pairs
Repeat the above two steps for a given number of times
(suggested 50), and select the best one

Pairwise Testing and Beyond 23

AETG (2)

A B C
A1 B1 C1

A B C
A1 B1 C1
A1 B2 C2

A B C
A1 B1 C1
A1 B2 C2
A2 B1 C3
A2 B2 C1
A2 B1 C2
A1 B2 C3

Adds the 1st test Adds the 2nd test Adds the last test

A B C

Pairwise Testing and Beyond 24

AETG vs IPO

AETG is fundamentally non-deterministic, whereas
IPO is deterministic

AETG has a higher order of complexity, both in
terms of time and space, than IPO

AETG is a commercial tool, and its license is very
expensive, whereas IPO is open to the public.

Pairwise Testing and Beyond 25

Orthogonal Arrays (1)

An orthogonal array OAλ(N; k, v, t) is an N × k
array on v symbols such that every N × t sub-array
contains all tuples of size t from v symbols exactly λ
times.

N – Number of test cases
k – Number of parameters
v – Number of values of each parameter
t – Degree of interaction
λ - 1 for software testing and is often omitted

For example, Table 2 is an orthogonal array OA(9;
4, 3, 2)

Pairwise Testing and Beyond 26

Orthogonal Arrays (2)

OA (9; 4, 3, 2)

Pairwise Testing and Beyond 27

Orthogonal Arrays (3)

Orthogonal arrays can be constructed very fast
and are always optimal

Any extra test will cause a pair to be covered for more
than once

However, there are several limitations:
Orthogonal arrays do not always exist
Existing methods often require |v| be a prime power and
k be less than |v| + 1.
Every parameter must have the same number of values
Every t-way interaction must be covered at the same
number of times

Pairwise Testing and Beyond 28

Recursive Construction (1)

Covering arrays are a more general structure,
which requires every t-way interaction be covered at
least once

Constructing a covering array from one or more
covering arrays with smaller parameter sets

Recursive construction can be fast, but it also has
restrictions on the number of parameters and the
domain sizes

Pairwise Testing and Beyond 29

Recursive Construction (2)

Use OA(27; 4, 3, 3) and OA(9; 4, 3, 2) to construct CA(27; 8,
3, 3) = 27 + 9 + 9 = 45

Double each column 0 -> 01
1 -> 12

2 -> 20

0 -> 02
1 -> 10
2 -> 21

Pairwise Testing and Beyond 30

Outline

Introduction

The IPO Strategy

Related Work

3-Way Testing and Beyond

Conclusion

Pairwise Testing and Beyond 31

Why beyond 2-way?

Software failures may be caused by more than two
parameters

A recent NIST study by Rick Kuhn indicates that
failures can be triggered by interactions up to 6
parameters

Increased coverage leads to a higher level of
confidence

Safety-critical applications have very strict
requirements on test coverage

Pairwise Testing and Beyond 32

The Challenges

The number of tests may increase rapidly as the
degree of interactions increases

Assume that each parameter has 10 values. Then,
pairwise testing requires at least 100 tests, 3-way
testing at least 103 tests, 4-way testing at least 104

tests.

Test generation algorithms must be more sensitive
in terms of both time and space requirements

The need for test automation becomes even more
serious

Impractical to manually execute and inspect the results
of a large number of test runs

Pairwise Testing and Beyond 33

State-of-the-Art

Both algebraic and computational methods can be
extended to 3-way testing and beyond

However, algebraic methods have fundamental
restrictions on the systems they can apply.

Computational methods are more flexible, but none
of them are optimized for n-way testing with n > 2.

Pairwise Testing and Beyond 34

Opportunities (1)

Possible ideas to reduce the number of tests
Domain partitioning – identify equivalence values of each
parameter
Parameter constraints – exclude combinations that are
not meaningful from the domain semantics
Fault-oriented test generation – only include
combinations that may contribute to one or more specific
classes of faults
Test budget – maximize the coverage of n-way
interactions within a given number of tests

Pairwise Testing and Beyond 35

Opportunities (2)

Possible ways to improve the test generation
algorithms

Combination of algebraic and computational methods,
• e.g., computational methods can be used to compute a

starter covering array and then recursive construction can
be used to expand the array

Pairwise Testing and Beyond 36

Opportunities (3)

Possible ideas for test automation
Test harness that can automate test setup, test
execution, and test results evaluation
Automatically generate test oracles from a high level
specification or by integration with tools based on formal
methods, e.g., model checkers

Pairwise Testing and Beyond 37

Outline

Introduction

The IPO Strategy

Related Work

3-Way Testing and Beyond

Conclusion

Pairwise Testing and Beyond 38

Conclusion

The problem of combinatorial testing is well-
defined and has been used widely in practice.

The IPO strategy is deterministic, has a lower
order of complexity, and still produces competitive
results.

Algebraic methods, if applicable, are fast and can
be optimal, whereas computational methods are
heuristic but very flexible.

Going beyond 2-way testing presents challenges
and opportunities to the area of combinatorial
testing.

